Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 16(6): e0252927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138895

RESUMO

Theoretically, small molecule CDK4/6 inhibitors (CDK4/6is) represent a logical therapeutic option in non-small cell lung cancers since most of these malignancies have wildtype RB, the key target of CDKs and master regulator of the cell cycle. Unfortunately, CDK4/6is are found to have limited clinical activity as single agents in non-small cell lung cancer. To address this problem and to identify effective CDK4/6i combinations, we screened a library of targeted agents for efficacy in four non-small cell lung cancer lines treated with CDK4/6 inhibitors Palbociclib or Abemaciclib. The pan-PAK (p21-activated kinase) inhibitor PF03758309 emerged as a promising candidate with viability ratios indicating synergy in all 4 cell lines and for both CDK4/6is. It is noteworthy that the PAKs are downstream effectors of small GTPases Rac1 and Cdc42 and are overexpressed in a wide variety of cancers. Individually the compounds primarily induced cell cycle arrest; however, the synergistic combination induced apoptosis, accounting for the synergy. Surprisingly, while the pan-PAK inhibitor PF03758309 synergizes with CDK4/6is, no synergy occurs with group I PAK inhibitors FRAX486 or FRAX597. Cell lines treated only with Ribociclib, FRAX486 or FRAX597 underwent G1/G0 arrest, whereas combination treatment with these compounds predominantly resulted in autophagy. Combining high concentrations of FRAX486, which weakly inhibits PAK4, and Ribociclib, mimics the autophagy and apoptotic effect of PF03758309 combined with Ribociclib. FRAX597, a PAKi that does not inhibit PAK4 did not reduce autophagy in combination with Ribociclib. Our results suggest that a unique combination of PAKs plays a crucial role in the synergy of PAK inhibitors with CDK4/6i. Targeting this unique PAK combination, could greatly improve the efficacy of CDK4/6i and broaden the spectrum of cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases Ativadas por p21/antagonistas & inibidores , Aminopiridinas/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Piperazinas/farmacologia , Piridinas/farmacologia
3.
Cancer Treat Res Commun ; 26: 100286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33338855

RESUMO

Nearly 1/3 of lung adenocarcinomas have loss of STK11 (LKB1) function. Herein, a bioinformatics approach was used to determine how accurately preclinical model systems reflect the in vivo biology of STK11 loss in human patients. Hierarchical and K-mean clustering, principle component, and gene set enrichment analyses were employed to model gene expression due to STK11 loss in patient cohorts representing nearly 1000 lung adenocarcinoma patients. K-means clustering classified STK11 loss patient tumors into three distinct sub-groups; positive (54%), neuroendocrine (NE) (35%) and negative (11%). The positive and NE groups are both defined by the expression of NKX2-1. In addition to NKX2-1, NE patients express neuroendocrine markers such as ASCL1 and CALCA. In contrast, the negative group does not express NKX2-1 (or neuroendocrine markers) and is characterized by significantly reduced survival relative to the two other groups. Two gene expression signatures were derived to explain both neuroendocrine features and differentiation (NKX2-1 loss) and were validated through two public datasets involving chemical differentiation (DCI) and NKX2-1 reconstitution. Patients results were then compared with established cell lines, transgenic mice, and patient-derived xenograft models of STK11 loss. Interestingly, all cell line and PDX models cluster and show expression patterns similar with the NKX2-1 negative subset of STK11-loss human tumors. Surprisingly, even mouse models of STK11 loss do not resemble patient tumors based on gene expression patterns. Results suggest pre-clinical models of STK11 loss are pronounced by marked elimination of type II pneumocyte identity, opposite of most in vivo human tumors.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/genética , Adenocarcinoma de Pulmão/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Fator Nuclear 1 de Tireoide/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/deficiência , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Fator Nuclear 1 de Tireoide/análise , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA